- Open-Apple
N

Releasing the power to everyone.

November 1987
Yol. 3, No. 10

ISSN 08854017
newstand price: $2.00
photocopy charge per page: $0.15

Reality and Apple’s vision

The Apple Il was introduced in 1977 at the first West Coast Computer Faire.
The show opened on April 16 in the San Francisco Civic Auditorium. Ten
years, four million computers, and a few months later, the same auditorium
was the site of September’s AppleFest. Apple was distributing buttons that
read “Ten Years Strong” Finally, after ten years, no one was predicting the
imminent death of the Apple II.

AppleFest’s opening keynote speech was given by Del Yocam, Executive
Vice President and Chief Operating Officer of Apple. Yocam's speech was
titled “Apple Home Movies” and was dedicated to celebrating the tenth
birthday of the Apple II. Yocam's presentation included clips from old Apple
commercials and videos. ‘

"You know," Yocam said, "the Apple 1 might have lived and died just
another gadget if it hadn't been for two circumstances. First, people could
leam to program on an Apple 1] using BASIC, a relatively simple programming
language, without having to load the language into memory....And second,
the floppy disk drive developed by Woz in 1978 assured the Apple Il along life
....The Disk Il and its disk controller card opened the floodgates for Apple IT
software. And it was the software that brought millicns of new customers to
the Apple II.

“The rest of Apple II history is Iargely a hlstory built on software that we
didn't even develop. That is what | think is the most remarkable thing about
our sucgess....The success of the early software, like VisiCalc and Apple
Writer, demonstrated to programmers howlucrative programming could be.
The floodgates were open. Programmers developed, customers bought
Apple II's, and the circle went Tound....

"In the eight years I've been at Apple, we've built five generations of Apple
IIs....In all that time, there was never a doubt on our part that there would be
a next generation Apple II. There are over 4 million Apple IIs in the world
today. But you can still run Apple Il software from 1977 on a llgs. In my mind
our greatest achievement is to advance the technology and take our
customers with us,

"The Apple Il exemplifies our dream to bring the power of computers to
individuals... We've spent the last ten years making the Apple Il better, all the
while fulfilling our dream of building great, truly personal computers.
...Without a doubt, the Apple I is advancing....From Apple’s point of view [
can tell you that in ten years the technology will be to today's technology what
the Iigs technology is to the Apple | Woz built for the Homebrew Computer
Club. We'll advance the Apple II in networking and communications, in
performance, in new types of peripherals, and in system software and
programming tools. ...We are working on multi-media, CD-ROM, and\ndeod]sc
technology.”

At ApplePest [was enthused by Yocam's enthusmsm for the Apple II. ITwas
struck by his vision ofwhat the Apple I1will become in the next 10 years. Back
home, however, reviewing the text of Yocam’s speech, [awoke to the fact that
Yocam had celebrated the past and future of the Apple Ii without once
mentioning AppleWorks.

AppleWorks was introduced in late April 1984, about three months
after the Macintosh. The program was originally written for the Apple III by
Robert Lissner, an independent developer who had previously done Quick
File for Apple.

While AppleWorks was under development, Steve Jobs was flying a pirate
flag over the Macintosh building and outfitting that machine with the famous
interface developed by Xerox researchers. Over on the Apple I side of the
street, Apple’s own researchers were using human subjects sitting at Apple

keyboards to refine a user interface based on cursor pointing, retum key
selection, and a "desktop” with a “clipboard” for transferring data between
files, Lissner incorporated the results of this research into AppleWorks.

However, according to popular legend, after AppleWorks was finished
Apple atterupted to find an independent company to publish the program.
Apple itself had two major problems with AppleWorks.

First, Apple was trying very hard to get the big MS-DOS developers to work
with the Macintosh. One of the reasons these developers gave for their
reluctance to work on the Mac was their fear that Apple itself would compete
with them—Apple, obviously, had tremendous advantages in terms of
distribution and access to inside information. Apple had a reputation for
developing applications software for its machines that would kill the market
for similar software— Apple Writer (which was at the top of the Apple I
software charts at the time) and a complete set of applications software for
the Lisa being major examples, Powerful voices inside Apple wanted the
company to get out of the applications software business.

Secondly, Apple was pouring all of its energy into promoting the graphics-
based Xerox interface used on the Macintosh. Among the people whowere to
decide how Apple’s marketing dollars would be spent, there was little hope
for. and less interest in, the text-based interface used by AppleWorks.

But, the legend goes, no independent company with the resources and
willingness to publish AppleWorks could be found. And on a warm spring
evening, in a joyous momerit of weakness that followed months of intense
attention to its new Macintosh and Apple Ilc babies, Apple let AppleWorks
slip out the door.

Apple’s punishment for its indiscretion was immediate —within six weeks
its illegitimate child sat at the top of the Apple Il best-seller lists, AppleWorks
achieved this without the benefits of a mother's love —it succeeded in spite
of, not because of, Apple’s meager marketing efforts in its behalf.

Since AppleWorks was released, for example, Apple has run 286 pages of
ads in A+ magazine. The word "AppleWorks” appears in those ads exactly
zero times, Four of the ads show screen shots of AppleWorks. Take a look at
Apple's lIgs ad in the September 1987 A+ if you have one handy (pages 33
39). AppleWorks appears in the gutter between the pages and is the only one
of the 23 programs shown that isn’t mentioned by name. This is typical of the
treatmentApple’s bastard child gets from its mother. Yocam didn't mention it
or Lissner in his birthday speech, and John Sculley, Apple’s president,
doesn’'t mention it or Lissner in his new book, Odyssey.

RIHTENNANT

“ALRIGHT, STEADY EVERYONE. MARGO, GO OVER TO ToMS COMPLITER
AND PRESS ‘ESCAPE’,...VERY CAREFULLY!"

3.74 Open-Apple

Before the end of 1984, the year of the Macintosh, a software product for an
Apple computer had dislodged the almighty Lotus 1-2-3 from the number 1
position in monthly retail software sales. One would expect no-end to the
ballyhoo. But the Lotus-killer was AppleWorks, and corporate Apple
celebrated the triumph with silence.]

During 1985, 1986, and 1987, corporate Apple's reaction to its illegitimate
child has been to continue to pretend that it doesn't exist. AppleWorks, in
turn, acts like a child of Satan as far as Apple is concened. Not only does the
program’s success heap scom on the Xerox interface, AppleWorks eats third-
party software alive. In Cupertino, the fact that since mid-1984 Apple itself
has earned a large proportion of the profits available in the Apple Il software
market has been a matter of concem rather than a matter of glory.

It's time for Apple to stop pretending, to modify its vision, and to
admit to the reality of what the Apple Il has become since the
Macintosh was introduced. In the three years since January 1984 more
than 2 million Apple IIs have been produced and sold —well over half of all
Apple ils in existence. Just as VisiCalcmade the Apple I1-Plus, just as Lotus 1-
2-3 made the IBM-PC, just as desktop publishing has made the Macintosh,
AppleWorks made the Ile and Ilc.

Reality is that AppleWorks has become the essential characteristic, the
defining characteristic, of the Apple Il family. They laughed when AppleWorks
sat down to play integrated software on an 8-bit computer, but nowhere has
integrated software met near the success that it has on the Apple I
AppleWork's speed, ease of use, and seamless integration have set
standards for all Apple 1ls of the future.

Reality is that more humans have learned the AppleWorks interface during
the last three and half years than have leamed the Xerox interface —even
though the Macintosh had a three-month head start. Apple’s insistence that
the Xerox interface is the only interface in Apple’s future is as stupid as saying
that the only legitimate music is rock and roll or that the only legitimate
literary form is the romantic novel. General Motors got to the straits it is in
today by removing the distinctions between its automotive families, not by
letting a Chevrolet be a Chevrolet and a Pontiac be a Pontiac.

Reality is that the productivity area (word processors, data bases,
spreadsheets, and similar programs) of the Apple II software market is a
shambles. Apple has not only taken all the profit out of this market for three
and a half years — it has put nothing back in. Pretending and wishing that it
wasn't happening, which has been Apple’s primary reaction to date, has us
on the edge of a disaster. (A secondary reaction has been spinning off a
Macintosh software company and attempting to sweep AppleWorks under its
skirts.) Only one established vendor of productivity software, Word Perfect,
attended AppleFest Where will future Apple Il productivity software come
from? At a dinner for developers the night before AppleFest, Sculley said that
the Apple Il software market is the only one left in which small, independent
developers aren't totally dominated by larger companies. That's true and, in
general, that's good. But if Apple couldn’t find a company strong enough to
publish AppleWorks in 1984, before it spent three years soaking up all the
profits in this market, how could there be one now? Sculley thinks there are
companies in the Apple Il market with the resources to develop a product
such as Hypercard, which took a team of the brightest stars at Apple three
years to develop for the Macintosh. But Sculley said he’s looking to
independent developers to provide that product for the Apple 1. Given the
amount of money earned by Apple Il developers during the last three years,
the idea is ludicrous.

Reality is that homes are the final large market for personal computers. As
the number of computers in schools and businesses mounts, we are
approaching a threshold across which millions of people will decide to
purchase computers for their homes. The Apple II's dominance in schools
will put pressure on parents to buy Apples. However, the dominance of MS-
DOS in businesses will put pressure on parents to buy clones. Apple is giving
a large share of the home market away to the clones by not marketing the
Apple Il as amachine capable of giving both kids and aduits the power to be
their best at home. For example, on October 12 Apple sponsored a network
television celebration of the bicentennial of the U.S. Constitution. Of the
twelve commercials shown, eight had to do with the Apple 11gs and kids or
education, two with Apple itself, and one with Apple l1s and the disabled. The
sixth commercial shown was titled “The Home Office.” It alone promoted the
idea of computer use by adults and it alone promoted the Macintosh. Taken
as a whole, Apple’s message was that the Apple II isn't suitable for use at
home by adults. This isn't a message that will maximize Apple’s share of the
home market, nor is it a message that reflects the reality of hundreds of
thousands of Apple Ils in homes right now giving adults the power to be their
best.

Apple will never acknowledge the existence ofits illegitimate child or begin

Vol. 3, No. 10
to show that child love without first bringing its corporate vision in line with
reality. What Apple must incorporate into its vision is what Apple 1l users
realized months ago —that AppleWorks has shifted the distinction between
“systems software” and “applications software.” AppleWorks is the systems
software that Apple II users want built into their machines —AppleWorks is
the "platform” that applications developers want to build from.

Here are the ideas I would champion if 1 worked for Apple.

First, corporate Apple should acknowledge Robert Lissner’s contribution
to the Apple II. He should be an Apple Fellow, like Bill Atkinson, developer of
MacPaintand Hypercard;and Alan Kay, developer of the Xerox icons.

Second, corporate Apple should acknowledge what Apple I1 users already
realize, that the “operating system” of the Apple Il ends on the AppleWorks
desktop. AppleWorks should be in the box with current Apple Iis and should
be built into the ROM of new Apple Iis (with plenty of RAM-based hooks for
independent developers to get their teeth into).

For example, a developer of application languages should be able to allow
users to write programs with the AppleWorks word processor. When the user
is ready to run the program, open-apple-K could compile and execute the
program. The program should be able to take control of the screen, to
request AppleWorks desktop memory, to access files on the desktop and on
disk, to use all other operating system tools, and so on.

For example, a developer of communications software should be able to
add a communications capability to the AppleWorks word processor. A
developer of graphics software should be able to write a program that is
activated whenever a graphics file is added to the AppleWorks desktop. A
developer of spelling checkers should be able to write a program that works
inside AppleWorks. And these developers should be able to do these things
without worrying that Apple will add those features to a future version of
AppleWorks and cut their market out from under them,

(For additional information on what “applications software” is if AppleWorks
itself is “system software,” take a look at the programs in Beagle Bros’ new
Time Qut Series. Contrary to the popular expectation that llgs products
would dominate AppleFest, most of the people | talked to said they
considered the Time Out Serles to be the big hit of the show.)

Apple is reportedly investing a large part of its research and development
funds in system software technology. A fair portion of that money should go
into a system software “platform” based on AppleWorks that defines an
Apple II, rather than one that defines a Macintosh.

Third, corporate Apple should acknowledge the havoc its illegitimate
child has caused in the Apple Il software market. Apple should reinvest the
dollars it has made from AppleWorks in a "Marshall Plan” for Apple 11 software
developers. The plan should be directed at small one- and two-programmer
companies that are committed to the concept of Apple 11 Forever, rather than
at large companies that are primarily Macintosh and MS-DOS developers.
The plan must be designed as an investment in the future of the Appie If
rather than as a profit center.

The plan should include strengthening Apple Il Developer Technical
Support to the point that it can provide training by correspondence (rather
than by a trip to Califomia that is too expensive in both dollars and time).
Developer support should also provide electronic forums for the discussion
and implementation of software standards, an interface between software
developers and Apple’s own hardware and systems software engineers, and a
continuation of its current technical help by electronic mail.

In addition to technical help, Apple Il developers need marketing help.
Presently this kind of help goes only to Apple II developers who share Apple’s
vision of the Apple II as a toy Macintosh. This help has to be extended to all
Apple Il developers, no matter what their vision. In the Apple 11 kingdom, it
has always been developers and customers who have, in the end, determined
the direction of the Apple 11. Apple’s help should be available to ali.

Since 1984, Apple's vision of the Apple Il and the reality of the Apple
Il have been getting farther and farther apart. It's time for Apple to blow
away the Macintosh smoke and look atwhat the Apple 11 has actually become.
The reality is a machine defined by AppleWorks. The good part of that reality
is that the Apple II has developed its own identity, distinct from Macintosh
and MS$DOS machines. The future of the Apple 1I will be unlimited if
corporate Apple builds on reality by making AppleWorks part of the Apple Il
“system. software platform” and markets the power of that reality to
adults with the enthusiasm it has heretofore generated only for the
Macintosh. The bad part of that reality is that Yocam's observations about
why the Apple Il was a success are no longer true. Few software companies
besides Apple itself have profited from Apple 1l development in the last three
years. If Apple is serious about producing advanced Apple lIs ten years from
now, it should invest its AppleWorks profits now in rebuilding the Apple 11
software industry.

November 1987

Control-l(nterface) S(tandards), continued

“Rinnnng...rinnng...Hey you, get up there. This is Oscar the Grouch and
I'm telling you it's time to get up. And don't forget to wind the clock so 1 can
wake you up again tomorrow....Rinnnng...Rinnng...Hey you....”

Early feedback on last month’s lead article indicate it was a sleeper,
espedially for those of you among our readers who don't write programs. |
hope you'll understand that [occasionally have to resort to articles like that
to make your lives easier in the future. Based on the mail we get, making a
printer do what the salesman said it would still seems to be one of the
primary problems in the Apple kingdom. Most of these problems are rooted
in alack of standards for printers and printer interface cards.

Open-Apple’s readers extend from those of you who don't program, up
thorough novice and intermediate programmers, up through commercial
hardware and software developers, and right into the labs where Apple’s
engineers are designing future Apple l1s. We are all, ultimately, Apple [l users.
Things will go smoother for all of us if the programmers, developers, and
engineers among us can agree on, understand, and follow a few more
standards than we have in the past Open-Apple is in no position to
promulgate Apple I standards, but I do want to provide a forum for raising
issues, for uncovering problems, and for providing pressure for better Apple
I standards. That’s part of what you're paying for when you subsaribe to
Open-Apple(and a little nap now and then is healthy, they say).

At any rate, this month’s quest should be more interesting to most of you.
Instead of looking at interface cards from the programmer's point of view,
we're going to look at them from the user’s point of view. We're going to
investigate in detail the user commands that conftrol Apple’s three most
popular serial interface “cards” or "ports.” There are significant differences in
what these commands do and how they work. Detailing these differences
here in Open-Apple should help users get the most out of their interface
cards, should help programmers and developers understand how to get their
programs to work on any Apple Il (even yours), and should help Apple’s
engineers to stay consistent.

The three interfaces we'll be examining are the Super Serial Card, which is
used in Il-Pluses and Iles, and the serial ports on the Apple IIc and Ilgs. The
firmware for the Super Serial Card was written by Apple’s Larry Kenyon. The
Heserial firmware was written primarily by Apple’s Rich Williams. And the [Iigs
serial firmware was written primarily by Apple’s Mike Askins.

Consistency with the Super Serial Card was not the highest priority in the
design of the IIc or ligs serial irmware. Particularly with the original Apple Iic,
the limited amount of space for firmware was supposed to make ernulation
impossible (the Ilc had to fit firmware for two serial ports and the mouse in
same amount of address space the Super Serial Card used). Though he was
supposed to design just a simple serial interface, Williams managed to
squeeze much of the functionality of the Super Serial Card into the original
llc. He did such a good job that today people wonder why the clown who wrote
the llc serial firmware didn't emulate the Super Serial Card exactly, rather
than wondering how the hero who wrote the llc serial fimware managed to
squeeze all that stuff into such a small space.

Modes and defaults. All three serial interfaces can operate in either a
“printer mode” or a “‘communications mode.’ Printer mode is used for one-
way transmission, as from your computer to a printer. Communications
mode is used for two-way transmission, as from your computer to a modem
and back.

The mode that an interface operates in has to be set up ahead of time —it
cannot be changed with a command. With the Super Serial Card, you specify
the mode by setting a dip-switch on the card itself. The manual tells you how.
With the lIc, you specify the mode using the llc System Utilities program. With
the Ilgs, you specify the mode using the control panel.

The Ilc and Iigs default to printer mode on port 1 and communications
mode on port 2. This is what you'll always get when you tum on the IIc. The
ligs, on the other hand, stores its control panel settings in battery RAM, so If
you change these default modes it will remember your new choice while
turned off. If you change the Ilc power-on defaults with the System Utilities
program, what actually happens is that some values in the “auxiliary memory
screen holes” are modified. The new values will be remembered as long as
the [ic is tumed on. Every time you initiafize a lic serial port, the firmware
looks in these screen holes to see what the current “dip-switch settings” are,
You can modify these values with your own programs — for more information,
see our November 1985 issue, pages 1.86 and 187.

In addition to mode, all three interfaces support a number of other
variable characteristics. Each device figures out the default characteristics
you want the same way it figures out its mode — dip-switch settings for the

Open-Apple 3.75
Super Serial Card, auximem screen hole values for the Iic, and control panel
seltings for the Iigs. Some of these variable characteristics include baud rate,
data format, parity, echo, line width, and handling of carriage returns and line
feeds.

In most situations, your goal as a user should be to set these defaults to
values that support your equipment and leave them alone. Ifyou succeed at
this, you don’t need to know anything more about serial interfaces.

Command syntax, The rest of us will now leam about how to send
commands that cause an interface to change its characteristics from their
default values to something else.

The Super Serial Card and the serial ports on the Ilc and Iigs can all be
controlled by embedding “command sirings” in your printed output. The
idea is that the serial firmware will recognize and intercept these strings of
ASCII characters, then act on them rather than passing them on to the
printer or modem. This is a common method for controlling devices
attached to a computer — your printer and modem probably have their own
command strings that they react to. Even the Apple’s disk operating system,
when used from Applesoft, is controlled by command strings. Both the Basic
Interface and the Advanced Interface (also known as Pascal 11 —see last
month’s article for more information) on Apple’s serial firmware respond to
command strings.

Though common, the technique isn't foolproof. "Control-D(efeated)” in
our December 1986 issue, page 2.85-86, discusses a number of specific
problems with the embedded command string technique. On the other
hand, the technique is quite flexible and allows for a great deal of
compatibility. AppleWorks, for example, provides a way for you to enter an
interface card command siring that will be sent each time you print
something. Since you are able to completely control the contents of the
command string, you can adapt AppleWorks to any interface card that reacts
to them. The alternative methods of controlling devices, such as POKEing
confrolling values into memory or CALLing command routines, provide finer
confrol but less ease of use and less compatibility. The Tigs serial firmware,
incidentally, does support control calls as well as command strings, as
discussed here last month, but the Super Serial Card and the Iic aliow only
command strings.

Apple has used three different formats for serial interface command
strings. All begin with a command character (usually control-l or control-A,
more about this later). [n the first format, the command character is followed
by a single, non-control character, for example “control-l R In the second
format, the command character is followed by a decimal number, which is
immediately followed {no space character allowed) by a single, non-control
character, for example “control-l 80N," In the third format, the command
character is followed by single, non-control character, a space, and either "E”
(enable) or "D (disable), for example, “control-] L E” {the Ilc technical
reference manual says there should be "no intervening space” with this
syntax, however, the llc actually ignores spaces; the Super Serial Card
requires them).

The Super Serial Card, the lic, and the 1igs each has its own special rules
about whether extra characters, spaces, or lower-case are allowed within a
command string. To keep your software as compatible as possible, always
use upper-case characters and never include spaces or extra characters ina
command string, except for the space that is required immediately before
“E” or "D." (If you are writing firmware, on the other hand, you'll get the
greatest compatibility by allowing the lower-case versions of command
characters as well as upper and by making spaces optional anywhere in the
command string.) Apple’s firmware will accept commands whether they are
sent in high-value ASCII or low-value ASCIL. If you are writing firmware, make
sure yours does as well.

Animportant difference between the Super Serial Card and the lIc and [lgs
serial firmware is that the Super Serial Card requiresa Return at the end ofa
command string. The Super Serial Card considers everything between the
command character and the Return character to be part of the command
string. None of this, including the Retum itself, is sent to the printer or
modem. Even if the command is unrecognized, the Super Serial Card will eat
it all. On the Ilc and llgs, on the other hand, at least some ‘portion of an
unrecognized command is usually passed on to the printer or modem.

Inaddition, the llc, Ilgs, and most other Apple Il interfaces do not require a
Return at the end of the command string (the Super Serial Card is the non-
standard device). Ifa Retun is included, it is always passed on to the printer.
Thus, any program that uses interface card commands and thatis interested
in controlling the position of the paper in the printer must figure out if it is
using a Super Serial Card or not. If so, it should put a Return at the end of all
commands (whoops —except three “parallel card” commands and the
“"change command-character command,” all noted later). If the program is

3.76 Open-Apple

running on a [lc or Iigs, on the other hand, Returns at the end of commands
should always be suppressed (whoops— except after a special version of the
line width command, more later).

For example, ifyou are setting up an interface card command string within
AppleWorks, you have to know whether the command requires a Return or
not. If it does and you leave the Return off, the command will either not be
executed or will cause other problems. If it doesn't and you put one there
anyhow, your paper will be advanced one line without AppleWorks knowing
about it

Another problem is that since the IIc and IIgs don't require a Return, they
allow command strings to be strung together, such as “control-l 80N control-
I L E” This doesn’t work with the Super Serial Card because the required
Return at the end of each command is missing,

The command character. As mentioned, each command string must
begin with a "command character.” The command character defaults to
controll in printer mode and control-A in communications mode with all
three of Apple’s devices. You cannot specify a different defauft command
character. However, all three devices allow you to change the command
character after initialization by printing the current character and following it
with any other control character except a carriage return. “Control-l control-
Z" (CHR$(9);CHR$(26)) for example, will change the printer mode command
character to control-Z. “Control-1 Return” (CHR$(9);CHR$(13)} does nothing.
“Controll control-Z Return” (CHR$(9);CHRS$(26);CHR$(13)) changes the
command character to control-Z and passes a Return to the printer —even
with the Super Serial Card. On the lIc, “control-I control-¢” (CHR$(9),CHR$(0))
has the undocumented feature of executing the primary feature of the “Zap”
command, about which we'll talk more later. So don't use control-e, Another
character that causes problems is control-D. It interferes with DOS. Various
Apple manuals also recommend against control-A, -B, -C,-H, -1, -J,-L /M, and
-Y. Control-Z is frequently.used.

The firmware in the Ilcand in the IIgs resets the command character to its
default value every time the firmware is initialized. This means that after
every PR# (IN#) or INIT call {the INIT call is available under the Advanced
Interface) the Iic/[Igs command character is reset to control-l or control-A.
The Super Serial Card, on the other hand, does not reset the command
character to the default value. With the Super Serlal Card in printer mode, do
aPR#1, change the command character to control-Z, and do another PR#1—
the command character will still be control-Z. On the lic and Ilgs, your
second PR#1 will reinitialize the command character to control-l. In this
respect. the llc-and llgs are like most other Apple Il interface cards—the
Super Serial Card is the non-standard device.

This difference s at the root of a fair proportion of “printer” problems and
is important to understand. It applies not only to the command character,
but to all Super Serial Card default characteristics except "Zap” status. After
a PR#1 or the equivalent, the Super Serial Card will reset itself to its dip-
switch defaults only if this is the first initialization following power-up,
following control-reset, or following the Super Serial Card's R(eset) command.
Inall other cases, PR#1 leaves the Super Serial Card's characteristics as they
were when the firmware was last used. .

Consequently, any program that uses the Super Serial Card and that
changes the default settings must also unchange them. If it doesn't,
subsequent programs, or even the same program run a second time, may
find the Super Serial Card unresponsive to commands. For example, if a
program changes the command character to control-Z and neglects to
change it back to control, control-l commands from programs run later will
not be recognized by the Super Serial Card,

If the same program is run a second time, for instance, it will send the
control-l control-Z code again, The control-l will be sent to the printer and the
control-Z will be recognized as the beginning of acommand. Pretend the next
thing sentis acommand to add linefeeds to camiage returns, "control-Z LE”
When the Super Serial Card sees the two control-Zs in a row it will send the
second one to the printer, Thus, the control-I, the second control-Z, and the "L
E” will be received by the printer —not the program’s intention at all.

None of this is a problem with the llc or Iigs, but to make your program
compatible with the Super Serial Card and third party cards that emulate it,
you must always change the command character back to control if you
change it to anything else. Make sure that it gets changed back even if your
user stops printing in mid-page.

If, as a user, you find a commercial program in your library that doesn't
return the Super Serial Card to its default settings, the only thingyou can do
to set things right is to turn the computer off or press control-reset after
running the program. There's a chance you could use the Super Serial Card'’s

Yol. 3, No. 10

“control-I R” reset command (more later) but if the command character has
been changed, even this command will go unrecognized.

The feature whereby two command characters in a row sends one of them
to the printer works only on the Super Serial Card. Neither the Ilc nor the ligs
support this, so don't use it

While you might expect that all third-party cards would use control-I and
control-A as the default command characters, it isn't so. The popular
Grappler-Flus uses control-Y for commands sent to its Advanced Interface
{see "Go, Logo, Go,” September 1987, page 3.64 for a good example of the
Kind of problems this causes). Firmware authors — please stick with control-
| and control-A. ,

Reset. All three interfaces under discussion here support the “reset
firmware” command. This command tells the firmware to reset itself to its
“dip-switch” (auxmem, control-panel) defaults the next time it is initialized.
However, on the llc and ligs this always happens automatically, whether
you've used the R command or not. The R command also disconnects the
interface firmware. With a Super Serial Card, this will jolt your screen out of
80-column mode if it's in it. Thus, Reset is an ill-behaved command that has
no useful effect except with the Super Serial Card. Nonetheless, any program
that uses other command strings should issue this command as part of its
QUIT routine, so that the next program that runs can assume a “normal”
serial interface. The syntax is, for example, “control-A R” To avoid the 80
column jolt. try a program-ending sequence like this one:

939@ REM ...end of program

9991 HOME . : REM clear screen to avoid jolt on 82/40 switch
9393 PRINT CHR$(21) + REM turn off 8@ columns just to be safe

9995 PRINT CHR$(4);“PRHL” : REM turn on serial port

9995 PRINT CHR$(9);“R” : REM reset defauits and turn serial port off
9339 PRINT CHR$(4);“BYE” : REM back to the program selector

Zap. The Zap command was designed to solve some of the problems that
occur with devices that use embedded command strings. After you issue a
Zap command, the interface firmware will stop intercepting command
strings and will pass everything it receives on to the printer or modem. The
Zap command is handy, for example, when you want to send strings of binary
data to a printer for a graphics printout or for a downloaded character set.
Without Zap, problems occur ifyour binary data accidentaily includes avalue
that duplicates the interface firmware command code. That byte and an
indeterminate number of the following bytes will get swallowed by the
firmware and your picture or character set will have a hole in it. The syntax for
Zap is, for example "control-1 Z."

To tum Zap off, simply do another PR# (IN#) command or make the
Advanced Firmware INIT call. This works even with the Super Serial Card
There is no command string for tuming Zap off, obviously, because the
firmware is ignoring all command strings when Zap is on.

Because the Zap command is typically used before sending binary data,
many programmers make the assumption that in addition to telling the
firmware not to eat any characters, it also tells the firmware not to burp any
additional characters into the character siream. This is not the case.

Apple’s serial firmware can be set up to automatically burp both linefeeds
and camiage retums into a character stream. Linefeeds, if burped, are
burped after Retuns. Returns, if burped, are burped when a specified
number of characters have passed without a Retum. This is for line-length
control. With the Super Serial Card, the Zap command has no effect on either
linefeed or Return insertion. With the licand l1gs firmware, the Zap command
autcmatically tums off Return insertion, but has no effect on linefeed
insertion.

Thus, if you are using the Zap command to pass binary data to a printer or
modem and you don't want occasional extra bytes inserted into your data,
you should tumn off both Return and linefeed insertion before executing the
Zap command. If you do this with a Super Serial Card, don't forget to have
your program turn the printer back on and issue the Reset command during
its QUIT routine. .

Linefeeds. A “linefeed” is a control character that tells a printer to
advance the paper one line. Many printers require a linefeed after each
carriage return, since all they do in response to the Return is move to the left
edge of the paper. All three of Apple’s serial interfaces have the ability to
either add or notadd a linefeed after each carriage return you send.

In general, the default setting for linefeed insertion is ON with printer mode
and OFF with communications mode. However, the Super Serial Card aliows
you to control this default with a dip-switch in printer mode, and the lic and
ligs, using the lIc’s auxmem screen hole values and the Iigs’s control-panel,
allow default control in both printer and communications modes.

November 1987

If the default setting isn’t what you want or if you aren’t sure of the default,
you can force linefeed insertion to OFF with the K command. This is one of
the three “parallel” commands that don’t require a Return on the Super
Serial Card. (If you put a Retumn after this command it will be passed to the
printer.) On the Super Serial Card this command, like all parallel card
commands, works only in printer mode. On the Ilc and ligs it works in
communications mode, too. See “"One of the first interface cards designed
for the Apple [1” in last month's {ssue, page 3.65, for more information on the
heritage of this and the other parallel card commands.

Unfortunately, there is no universal way to tumn linefeeds ON with Apple’s
firmware. The Super Serial Card, the 3.5 ROM llc, and the ligs support an
enable/disable linefeed command that goes, for example, “control L E”
(command-code, Linefeed, Enable) or “control-! L D” {command-code,
Linefeed, Disable). The original lic doesn't support this syntax. The original
Ilc firmware does support an L command, however, that will tum linefeed
insertion on. It goes, for example, “control-A L. The 3.5 ROM lic firmware sort
of supports the original IIc’s L command, but not very well (the 3.5 version
seems to require either another command character or a Return after the
"L;" ifit gets a Return it eats it, although the original Iic finmware would pass it
through). Neither the Super Serial Card nor the IIgs support the “L version at
all. :

In addition to inserting linefeeds into the data it sends out, all Apple serial
firmware can also delete linefeeds from data coming in from outside the
computer. Obviously, this has no meaning in printer mode, so it applies only
to communications mode. The default setting for this feature is amish-mash.
The Basic Interface on the Super Serial Card and both versions of the Ilc
firmware default to deleting incoming linefeeds. The Advanced Interface on
the Super Serial Card and both interfaces on the Ilgs firmware default to
allowing incoming linefeeds to pass through unmolested.

With the Super Serial Card, the 3.5 ROM llc, and the Ilgs, you can use a
"Mask linefeeds” command to control linefeed deletion. For example,
“control-AME” (command code, Mask, Enable) causes incoming linefeeds to
be deleted; “control-A M D” (command-code, Mask, Disable) causes
incoming linefeeds to be passed. With the original Iic, there is no way to
change the default—incoming linefeeds are always deleted.

Screen echo, line width, and Return. "Screen echo” has to do with
whether the data you send out from your computer appears on your screen
as you send it. In the context of serial ports, this characteristic is also
sometimes called "video.” Some commands for turning screen echo on and
off also affect "line width.” Line width affects how often Retumns are burped
into the character stream being output. However, on some interfaces, line
width isn't the only variable that controls Return insertion. _

First lets look at Return insertion, The Super Serial Card, the Iic in
communications mode, and the IIgs all default to NOT adding Returns when
the specified line width has been reached. The original Ilc firmware in printer
mode (and most parallel card firmware), on the other hand, does insert a
Return when the specified line width has been reached. This can be a
problem when using condensed characters with software such as AppleWorks.
At 17 characters-per-inch you can get 136 characters on an 8 inch piece of
paper. If the interface firmware adds a Retumn after every 80 characters,
however, what you'll see on your printout won't be what you expected,

In most applications today, you want Return insertion turned OFF.
However, neither the Super Serial Card nor the original llc have a command
for doing this. With the Super Serial Card this isn't a major problem, since it
defaults to no Retum insertion, anyhow. With the original llc, however, which
defaults the other way, it is a problem. The IIc manual mentions a POKE you
can use to tum off Return insertion, but we're not allowing POKEs in this
article. The only command-based alternative for turning off Return insertion
on the original Ilc is to use the Zap command, There are nocommand-based
alternatives for turning off Return insertion on the Super Serial Card, not
even Zap does this—so don't tum it on unless you really need it.

While most applications work best with Retum insertion OFF, LISTing
Applesoft programs on a printer works best with Return insertion ON. This
way the ends of lines that are more than 80 characters long are “wrapped” to
the following line rather than being printed on top'of the beginning of the line.
The llc and most parallel cards do this automatically. The Super Serial Card
and the llgs, however, require two commands to implement this. One is to set
the line length to something other than zero and the second is te fum on
Return insertion.

To tum ON Return insertion with the Super Serial Card, the command is
"C,” as in “control-l C" This syntax works only on the Super Serial Card,
however. The 3.5 ROM lic and the IIgs support an enable/disable command

Open-Apple 3.77
for this, as in "control-l CE.” On both versions of the llc you can also turn on
Return insertion simply by setting the line width to a non-zero value. (The 3.5
ROM Iic's "C E/D” command sets the line width to zero when you choose
disable and sets line width to the initialization default when you choose
enable. Thus, if the default line width is zero, as it is in communications
mode, the "C E” command has no effect Not to worry, use one of the line
width commands to set a positive line width instead.)

To summarize: with the Ilc (and most parallel cards), Retumn insertion
always occurs unless the fine width is set to zero (unfortunately, however, the
original Iichas no command for setting the line width to zero other than Zap),
With all other Apple interfaces, Returm insertion requires both a non-zero line
width and enabled Return insertion.

Line width is controlled by a variety of commands, only one of which is
nearly universal, The "[“ command, as in "control-1 I, sets the line width to 40
on the Super Serial Card (it also affects echo; more about that in a moment).
On the llc and the Ilgs the "I” command has no effect on line width. Both
versions of the [Ic and the 1Igs support a line width command that consists of
a decimal number, between 1 and 255 inclusive, followed immediately by a
Return. The Return is eaten by the firmware and the line width is set to the
decimal number. This command has no affect on Echo. The Super Serial
Card doesn’t support this command, however.

The nearly universal version of the line width command is "nl,’ as in
“control-1 ;" where the small “n” is again a decimal number between 1 (lic/

‘Ilgs) or 40 (S5C) and 255 inclusive. What prevents this command from being

universal is that it doesn’t work in communications mode on the Super
Serial Card. Another feature of the "nN" command (which is one of the
"parallel card commands” that never requires a Return after it) is that it
disables Echo.

There are also a variety of ways to control Echo. The simplest is the Echo
enable/disabie command, as in “control-AE D, for example. This command
isn't available on any version of the llc, however, nor is it available from
printer mode on the Super Serial Card. The "I” command mentioned earlier
{which is the third and final of the parallel commands that never require a
Return) enables Echo on all interfaces except the Super Serial Card in
communications mode. In printer mode on the Super Serial Card, it also
changes the line width. The "nN" command disabies Echo on all interfaces
except the Super Serial Card in communications mode. It also changes the
line width.

When you are using a program such as AppleWorks, you wantyour interface
card's Echo disabled and Retum insertion off. (Echo disabled so that what
you print doesn't appear on the AppleWorks screen; Return insertion off so
that AppleWorks has complete control over Return placement.) The “n¥”
command is the universal "no Echo” command. Unfortunately, there is no
universal “no Return” command— in fact, as we have seen, the Super Serial
Card and the original llc don't have any command for this at all. On some
third-party parallel cards, “control-l ON” does the trick. However, the Super
Serial Card ignores this command compietely; the Iic and ligs respond by
disabling Echo but leaving the line width unchanged. The closest thing to a
universal Interface card command for AppleWorks and similar programs
would be "control-] 255N." This disables Echo and, while it doesn't turn off
Retum insertion totally, it will suffice until we have printers that can fit more
than 255 characters on one line.

While AppleWorks and similar programs prefer Echo and Return insertion
OFF, Applesoft programmers often prefer to have them both ON. This is so
that you can see whatyou're typing after you enter a PR#1 command from the
keyboard (if Echo is disabled what you type appears only on the printer), and
50 that long lines wrap correctly, as mentioned earlier. There are no universal
commands to accomplish this, either. On the Super Serial Card you must
execute the “control-1 C” command to get retumn insertion to work at all. If
you next do a “controkl I” to enable Echo, that command also sets the line
width to 40, Ifyou try to change the line width to something longer with a “nl¥”
command, that will turn Echo back off. Gotcha —the Super Serial Card won't
let you have both Echo and Retumn insertion unless the line width is 40. On
the lic, Return insertion works whenever the line width is non-zero, soan “ni"
command to set the line width you want followed by an "I" command to
enable Echo will get you where you want to go. Finally, on the llgs, you first
must enable Return insertion with a “control-l C E” command, set the line
width you want with an "nl" command, and enable Echo with eitheran ™" or
an "E E” command.

In communications mode, whether you want Echo or not depends on
whether you are working with a “full duplex” or “half-duplex” host computer.
Under the typical full-duplex arrangernent, the host computer echos the

3.78 Open-Apple

characters it receives from you back to you and it is the echoed characters
thatappear on your screen. (You type "A,’ it goes outyour serial port, through
your modem, down the telephone line, through the receiver's modem and
serial port, to the host computer, which echos it back through its serial port
and modem, over the telephone line, through your medem and serial port,
and onto your screen—makes you appreciate the speed of electrons,
Incidentally, if both computers are set up to echo everything they receive, the
"A” flies back and forth like a ping-pong ball and the communications link
seems to freeze up.) Under full-duplex you want your local Echo disabled, or
else all the characters will appear on your screen twice. A half-duplex host, on
the other hand, does not echo your characters back to you. For this you want
local Echo enabled, or else you won't be able to see what you are typing. Note
that in communications mode the Super Serial Card does support the “E E/
D" command, as does the Iigs. The lIc and the Super Serial Card in printer
mode don't have this command; again, your only recourse is to control Echo
with the 1" and "nN" commands.

Baud, data format, and parity. For most applications there is no reason
to have to change baud, data format, or parity by command. You should be
able to set up your system so that the correct characteristics are chosen by
default. With the Super Serial Card, you choose the defaulis by setting dip-
switches, with the Ilgs you choose the defaults with the control panel. With the
licyou choose the defaults with the System Utilities program. If you'd rather
not have to run the System Utilities program every time you tum your lIc on,
simply make your printer, modem or whatever match the IIc’s default
defaults —9600 baud, 8 data bits, no parity for port 1; 300 baud, 8 data bits,
no parity for port 2 {for more information on data format and parity see Uncle
DOS's introductory comments in last month's issue, page 3.69).

If you must change one or more of these characteristics by command, at
least you'll find near perfect consistency in the commands available to do
this. Baud is changed with an "nB" command; data format with an "nD"

W e

command, and parity with an “nP” command, where "n” is:

nB=baud rate nD=data format nP=parity
data/stop bits
0% use default @ g 1 2 none
1 56 1 2 A 1 odd
2 75 2 6 1 2 none
El 118 3 5 1 3 suen
q 134.5 4% 8 2orl 4% none
5 158 5 7 2 5% MARK
6 300 g 8 2 6% none
7 60 7¥ 5 2orl-1/2 7% SPACE
B 1200
3 1800 * NOTES: @B resets baud to dip-switch/control-panel
18 2480 default on 5SC/1Igs, drives Iic crazy.
11 3500 4D has 1 stop bit with parity options 4-7.
12 48e0 70 has 1-1/2 stop bits with parity options B-3,
13 72¢0 SSC and Ilc only
14 S68e 4P-7P not awailable on Ilgs
15 15z@8

As almost always, the Super Serial Card expects a Return after these
commands, the Ilc and Iigs don't

Handshaking. Handshaking is a morass I'd just as soon not get into, but
since serial devices don't work well without it, quess we'll have to. Here's the
idea of handshaking—you are printing an AppleWorks spreadsheet on your
printer and your interface and printer have been set up to communicate at
9600 baud. Although your printer can communicate at that speed, it can't
actually print anywhere near that fast. Most printers have at least a small
amount of memory for storing a few of the characters waiting to be printed,
but for large amounts of characters the printer has to have some way to tell
the computer to stop and wait. Once the printer has caught up, it also needs
away to tell the computer to proceed. This is what handshaking is all about.

Serial devices have several different hardware protocols that go by names
such as “data carrier detect” (DCD), “data set ready/data terminal ready”
{(DSR/DTR), and “request to send/clear to send” (RTS/CTS). These protecols
involve electrical signals on special wires running between the sending and
receiving devices. With the Super Serial Card and the ‘Apple lic the
commands for changing hardware protocols involve a pair of wire cutters and
a soldering iron. The Apple llgs allows you to independently turn DCD and
DSR/DTR handshaking on and off using the control-panel defaults or using
control calls to the Advanced Interface, but provides no command strings for
this.

In addition to hardware protocols, there are software handshaking
protocols. These involve the receiving device sending command strings to
the sending device that tell it when to start and stop. The version of this

Yol. 3, No. 10

protocol used by Apple's interfaces is called XON/XOFF. It is available on all
the interfaces we're discussing here except the original Ilc, which doesn't
support it. The command for tuming it on and off is "X E/D.” It always defaults
to off.

Applesoft TABs. The Super Serial Card and the Iigs include a command
that causes the Monitor’s horizontal position counter to be left equal to the
column count. Normally both the Super Serial Card and the Apple 11 80-
column firmware force this counter to zero. To get the Applesoft PRINT TAB
command to work correctly when sending stuff to your printer, it is necessary
to PRINT CHR$(21) to the screen to tum off the 80-column firmware and then
to issue the serial interface Tab command. This command has the enable/
disable syntax. With the Super Serial Card the command letter is “T," with the
llgsitis "A," so for example, “control-1 A E” would enable Tabs on the ligs. Itis
also a good idea to disable Echo when using the command, otherwise the
first few lines of your Applesoft program, which lie adjacent to the memory
area used for the text screen, can get poked full of holes as characters are
displayed beyond the 40th column of the 40-column screen. ;

Neither version of the lic has a Tab command. For some more universal
solutions to this problem, see "PRINT TAB alternatives” in our March 1987
issue, page 314.

Communications mode. All three interfaces include “"dumb terminal”
software, This Iets you talk over a modem quite easily. None of your session is
saved anywhere, however, so you can't use this for “"downloading” material
any faster than you can read it or copy it onto a sheet of paper. For all three
interfaces, the command for entering the terminal is “T" as in "control-A T
To exit the terminal, use “control-A Q"

All three interfaces also support “remote-control” terminal commands,
This means that if a control-T comes in from a remote device, your serial
firmware will jump into terminal mode and stay there until it sees a control-&.
I can't quite figure out what the practical value of this feature is, but
somebody somewhere obviously once thought it was Important. It can be a
troublesome feature if you are trying to receive binary data through the serial
firmware and the data accidentally includes a control-T, because further data
{up to the next control-R) will be lost. A similar problem occurs if you have
XON/XOFF handshaking enabled and you receive a control-S or control-Q
{the XOFF and XON characters). In that case, at the very least the control-5 or
controkQwill be eaten. In some cases, all data after the confrol-S and before
the next control<Q may be lost.

With the Super Serial Card you can avoid both problems by tuming off
XON/XOFF protocol (conversely, this means control T works only if XON/
XOFF is enabled). On the Iic, a Zap command will prevent control-T and
control-R from working. The Tlgs doesn’t have a way to prevent control-T and
controk-R from working that I can find,

Another potential problem that occurs when you are receiving data from a
remote device is corruption of the data by accidental taps on your keyboard.
Normally the serial firmware accepts input from the remote device and the
keyboard simultaneously, A program can temporarily disable the keyboard
by issuing a “control-A F D” command. After this command, keyboard pecks
will be ignored. The keyboard can be re-enabled with “control-A F E,” but
obviously this will have to come from your program —you can't type it in and
expect anything to happen.

One other feature you may find useful in communications mode is the
power to send a BREAK signal. This signal consists of 233 milliseconds
worth of zero bits and is used by some computer systems for sngnoff On the
Super Serial Card, the command for this is “control-A B Return.” On the Ilc
and llgs it’s “control-A S.” | can tell from the Super Serial Card and fic source
code that their versions of BREAK are shorter than 233 milliseconds when an
accelerator is used; I suspect this was fixed on the Iigs but 1 can't figure out a
way to test it

Other commands. The Super Serial Card supports several more
commands not already mentioned. Three of these are for adding delays after
carriage returns, linefeeds, and formfeeds. Printers without memory buffers
require these delays or they skip characters that come in while the printer is
moving the print head or the paper. Neither the {Ic nor the [Igs support these
comimands. The Super Serial Card also has a command that allows your
Apple to be connected to a modem in one slot and an external terminal in
another and a command that can cause conversions between upper- and
lower-case.

Of more interest is @ command new the Iigs, a command that enables
input and output buffering. Issue a command such as "control-A B E” and
you suddenly have 2,048-byte buffers for both input and output (assuming
the memory manager has that much memory available—if not, you'll get

November 1987

128-byte buffers). The size of these buffers can be changed using Advanced
Interface control calls.

Here's how the buffers work —whenever an incoming character arrives or
an outgoing character has been transmitted, the serial chip will send an
interrupt signal to the firmware. The firmware collects incoming characters
and puts them in the input buffer and takes characters out of the output
buifer and transmits them.,

Like other Ilgs serial firmware features, buffering status after port
initialization can be controlled with the control-panel. Note, however, that if
your control-panel default is set to no buffering and you set up buffers by
command, those buffers will disappear if you reinitialize the port with a PR#

Open-Apple 3.79

put outgoing characters into the output buffer with normal INPUT and PRINT
commands. The advantage of an input buffer is that normally Applesoft can't
do INPUTS fast enough at high baud rates to capture all incoming characters.
But with a buffer and handshaking, the serial firmware effectively slows down
the rate of transmission so that Applesoft can handie it error-free. The
advantage of an output buffer is that you can PRINT a chunk of text and go
about your business while the firmware sends it out at a slow baud rate.

Using Advanced Interface control calls with the ligs serial firmware, you can
build on the buffering routines to do fancy stuff such as create large printer
bulffers for background printing, The Iigs can feed characters to your printer
at whatever speed it requires while you go on about your business.

command or the equivalent.

Applesoft programs can get incoming characters from the input buffer or

If last month's article made you sleepy, this month’s might give you

insomnia. I hope not. Pull up the covers, Bobo.

Ask

(or teI_I) _
Uncle

DOS

if you've ever daydreamed of having a job like
Uncle DOS, if you're good, and if you're committed
to the Apple I, send a resume to Jim Merritf, Manager:
Apple I Developer Technicat Support MS-27-T: Apple
Computer Inc,; 20525 Mariani Ave; Cupertino, CA
95014.

Mopping up EMI

Television interference (TVI), radio interference
(RF1), and broadcast interference (BCI) are three of
the biggest problems that plague home computer
owners, as mentioned in last month’s letter "Apple
Makes Family Grumpy” (page 3.70). As a group, they
are known as electro magnetic interference (EMI). 1
am a ham radio operator and have had to leam quite
a bit about what causes the problems and what can
be done to fix them. Sometimes, fixes are relatively
easy. Other times they are simply impossible,

Some-reading material that Open-Apple readers
who have EMI problems might find interesting are the
Apple H-Plus/Ile Troubleshooting & Repair Guide, by
Robert C. Brenner, pages 189-194 (H.W. Sams, $19.95),
Radio Frequency Interference (American Radio Relay
League, $4), and the October 1987 issue of PC
Resource magazine.

Computers create EMI because they have oscillators
—components that create electronic signals that
*vibrate” on and off very rapidly. The Apple Iie’s main
oscillator vibrates at a speed of just over 1 MHz (1
million vibrations per second). The Apple 1I's power
supply also generates electronic vibrations in the 10-
100 kHz range (10 to 100 thousand vibrations per
second). If you have a speed-up card, it also has an
oscillator,

In a perfect world, the frequencies mentioned
would not be in a range that would cause interference
with radios and TVs. However, the oscillators also
create harmonics that will extend far beyond the
fundamental frequency. These harmonics usually are
where EMI and other problems occur.

EMI can be “conducted” (passed through wires—
usually the AC power line) or “radiated” (passed
through space like radio signals). Some simple ideas

that can solve conducted EMI are to make sure the
comiputer and TV are on separate AC circuits and to
connect traps or line filters between the power outlet
and the TV or computer or both.

If your problem is radiated EMI, some simple
solutions may be to locate the computer farther away
from the TV, ko rotate or reposition your TV antenna,
to replace the TVs twin-lead antenna cable with 75
ohm TV cable, or to subscribe to cable television.

Oryou can unplug all the cables from your computer
and see if that helps. Cables can and do act like
antennas— they radiate the computer’s intemal EMI
to the outside world. With the computer on and no
cables connected, see if you still have interference. If
not, you can reduce radiation from your cables
{including the power cord) with “ferrite cores.” [fyour
computer dealer has a sharp technician, they may
keep them in stock. A good electronics supply house
should have them too. Computer Radio, Box 2682,
Pine Brook, NJ 07058 sells a split-ring choke that is
very easy to install and is specially designed for
computer EMI applications. For $17 ppd you get a
package of four cores. These cores are split so that
cables with connectors car be wound in them. Wind
the cable two to four times around the core.

From this point on fixes get more difficult.

My Apple Ile is by far not the worst computer in my
house. | have an MS-DOS clone that completely
obliterates all TVs in the house. But that's another

story. J. Craig Clark Jr.
Ham Radio Magazine
Greenville, N.H.

Patch instructions patchy

- .1 can’t get the "AppleWorks as copy machine”
patch (October 1987, page 3.71) to work. The patch
didn't include loading directions for the SEG.M1 file...

Lee Hayward
Denver, Colo.

...0ctober’s “AppleWorks as copy machine” letter
instantly appealed to me. But there must be a few
introductory steps before one types the patch instruc-
tions. This poor soul isn't even able to load SEG.M1....

Robert J. Netro
Canton, Ohio

The secret to the patch as published is that you
don't have to load SEG.ML I should have made that
clear. Since the patch is only one byte long, Bird just
pokes that new value, 255, into memory at byte 768,
then "BSAVEs” that byte into the correction locations
in the program, Here's an éxplanation:

adr
A768,

Notice that the length of what's being saved is 1
byte long. The A parameter tells Basic.system to

filename
SEG.M1,

cnd
BSAVE

byte
636074

filetype length
T$08, L1,

look for that byte at memory cell 768. The B parameter
tells Basic.system to stuff that byte into the 36,074th
buyte of SEG.ML which has a file type of $00 (if you
don't specify the file type, Basic.system will give you
a FILE MISMATCH error, since BSAVE normally expects
to work with a BiNary file).

Under DOS 3.3 this command syntax would erase
the old SEG.M1 and replace it with a Ibyte file.
Basic.system, however, leaves SEG.M1 just as it is
except for overlaying the 36,074th byte with the new
value. For more on this see “The binary savior,” and
“It’s painful to B misunderstood” in the July 1985
Open-Apple, page 151

All AppleWorks paiches should be performed on
backup copies, of course, in case one of us makes a
mistake. If yjou use Pinpoint or one of the AppleWorks
expansion programs it is usually necessany to make
this patch, and others like it published here, to an
originai copy of AppleWorks, then reinstall Finpoint
or your expansion program. The reason this is
necessary is that Pinpoint and the expansion programs
tend to move things around inside the AppleWorks
Jiles; what the paich expects to change at byte 36074
may now be elsewhere inside the file.

Two lines too cryptic

The two-telephone discussion in your July 1987
issue (page 3.42-43) is intriguing, but too cryptic for
me. Could you explain it again?

(ary Smith
Claremont, Calif.

Call your local phone company and order a “second
line" for your house. This line will be separate from
your first and will have a different phone number,
The phone company will run a new cable (o your
house that will end on an outside wail somewhere in
a box called a "network connection.” This is where
the phone company’s property ends and yours
begins.

Somewhere inside your house pjou should be able
to find a “junction” where a cable running from your
first phone's network connectlon joins cables coming
from all the phone jacks in your house. If you can't
find this junction get professional help.

Run a new cable (available from Radio Shack,
hardware stores, phone stores...) from your second
line’s network connection to the interior junction. At
the network connection, attach the new cable’s four
wires according to the colors listed on the network
connection box.

At your junction bax, disconnect the yellow and
biack wires from your first telephone line and leave
them unconnected. Connect a multimeter to the
remaining yellow and black wires that run to your
phones from the junction box. They show!d have no
voitage and infinite resistance. If they dont, get
professional help.

3.80 OpenApple

Now connect the red wire from your new phone
line to the yellow wires running to your phones.
Connect the green wire from your second line to
your phones’ black wires. Leave the new phone
line's yellow and black wires unconnected.

: . % *E;E 1_” 3 1
Evenyjack in your house now has both phone lines
available. Existing phones.will stilt be connected to
pour old number. To hook a phone lo your new,
second line, you either need a two-line phone that
will plug into a modular jack and receive both lines,
or you will need a “two-line modular jack” to stick
into an existing jack. It will give you two outlets to
plug phones or modems into—one for the old line
and one for the new line.

Frigid flaw

Bill Basham's trick of wiping out a byte in the
keyboard microprocessor's RAM. to fool the Memory
Manager info doing a "frigid” reboot is extremely
dangerous ("Reboot, cold reboot, frigid reboot,” July

Open-Apple

is wrillen, edited, published, and

© Copyright 1987 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally
Business Manager Sally Dwyer

Most rights reserved. All programs published in Open-Apple are
public domain and may be copied and distribuled without charge.
Apple user groups and signilicant olhers may reprint articles [rom
lime to time by specific wrillen request. Requests and other
editorial malerial, including letiers ta Uncle DOS, should be senito

Open-Apple
P.0. Box 7651
Overland Park, Kansas 66207 U.S.A.

Published monthiy since January 1985 World-wide prices {in U.S.
doliars; airmail delivery included at no addilional charge): $24 lor 1
year, $44 for 2 years: $60 for 3 years. All single back issues are
currently avastable for $2 each; bound, indexed editions of Yolume 1
and Volume 2 are §14 95 each Volumes end with the January issue;
an index for the priorvolume is included with the February 1ssue.
Please send all subscription-related correspondence to

Open-Apple
P.0. Box 6331
Syracuse, N.Y. 13217 USA.

Open-Apple is available on disk from Speech Enterprises, P.O.
Box 7986, Houston, Texas 77270 (713-461-1666).

Unlike most commercial soltware, Open-Appie is sold in an

unprotecied format for your convenignce. You are encouraged (o
make back-up archival copies or easy-10-read enlarged copies far
your own use without charge. You may also copy Open-Apple for
distributien to clhers. The distribution fee is 15 cenis per page per
copy distributed.
WARRANTY AND LIMITATION OF LIABILITY. | warrant thal most of
the information in Open-Apple is usetul and correc!, although
drivel and mistakes are included from lime to lime, usually
unintenticnally. Unsalisfied subscribers may return issues wilhin
180 days of delivery for afull relund, Please include a note fromyour
parents or children confirming that all archival copies have been
destroyed. The unfullfilled portion of any paid subscription will be
refunded on request. MY LIABILITY FORERRORS AND OMISSIONS
1S LIMITED TO THIS PUBLICATION'S PURCHASE PRICE. In no
case shall | or my coniributors be liable for any incidental or
consequential damages, nor for any damages in excess of the [ees
paid by a subscriber

ISSN 0885-4017
Printed in the U.S.A.

Source Mail; TCF238
CompuServe: 70120,202

1987, page 3.48). This byte is currently sitting at the
bottom of the stack used by the keyboard micro. If
Apple ever does a revision to the keyboard micro
software, this location is almost guaranteed to change.
Since the keyboard micro is tightly wound into the
control panel and baltery backed up RAM, Basham's
frick could wreak havoc with future revisions and
generations of the Igs.

The reason the Memory Manager uses the keyboard
microprocessor’s RAM to determine whether the Iigs
has been turned off is that the regular RAM in the [igs
has an uncanny ability to retain its state even after the
machine has been tumed off, When prototypes of the
ligs were powered off, then quickly turned back on,
the Memory Manager performed its power-off check,
which usuallyverified, and assumed that the RAMdisk
should be preserved. The system would then boot
from the RAMdisk, which would crash the system,
since the RAM was not 100 per cent intact

To fix this, | came up with the idea of using the RAM
in the keyboard microprocessor, which is a static RAM
that clears quickly when the power is turned off. But
since the keyboard RAM test was added after the
keyboard micro’s code was done, it required the use
of an unused byte in the stack area.

Peter Baum
HNinth Wave
Cupertino, Calif.

As an Apple employee, Baum designed the "Apple
Desktop Bus,”which is used to.connect the keyboard,
mouse, and-other input devices to the Apple Iigs. He
now runs an independent design and consuiting firm
and writes a monthly hardware column for Call -
APF.LE,

Expanding Applesoft

In response to Dr. Stephen White's questions [n the
October Open-Appie about Applesoft memory lim-
itations, there is a suggestion I might make.

If all that is really required is additional memory for
variables and strings, may I suggest the use of The
Beagle Compiler? 1t's not ProDOS 16, but the compiled
code takes up less space than the original program.
And while the compiled code still has to fit in the
“lower 48, variables can be stored in the alternate
64K memory bank, in extended memory in auxiliary-
slot cards like RamWorks, or in standard-siot memory
cards like RamFactor. This allows the use of much
larger arrays of data.

I have used string arrays dimensioned to more
than 2,000 strings with numerous other dimensioned
arrays of similar size for floating point and integer
variables. The program itself was on the order of 24K
in length. This will go a long way to solving a lot of
problems. Incidentally, even disk-to-disk compilation
is fast (measured in seconds) and execution times
are greatly increased by the compiler.

Robert L. Myers
Fayetteville, WV.

BASIC for the ligs

Contrary to your assertion on page 3.71 of the
October issue that Apple has no plans to make BASIC
available on the ligs, the Apple Programmer’s and
Developer's Association was selling a beta version of
Apple Iigs BASIC at AppleFest

According to a product data sheet | picked up, the
language is interpreted and supports structured
programming (DO/WHILE, DO/UNTIL, labels rather
than line numbers for GOTO and GOSUB); multi-line.

Vol. 3, No. 10

named procedures and functions with parameter
passing, local labels, and recursion support; easy re-
direction ofinput and output (character devices, such
as printers, and block devices, such as disks, are both
treated as “files”), PRINT USING and INFUT USING
with IMAGE statements; support for single- and
double-precision floating point arithmetic using
Apple’s SANE (Standard Apple Numerics Environment)
tools, as well as 16, 32-, and 64-bit integer variables;
arrays of up to 32,767 elements per dimension and
up to four megabytes in size; complete support for
the I1gs Toolbox; and a licensable runtime version of
the interpreter that allows distribution of applications
to people who don't have their own copy of the Tlgs
BASIC software. '
Some conversions may be necessary for Applesolt
programs. Version 10 should be released to the
public during the first quarter of 1988.
Cliff Tuel
San Jose, Calif.

What I meant last month was that an enhanced
version of Applesoft for the Iigs wasn't in Apple’s
plans, not that an enhanced version of BASIC wasn't
to be. In retrospect, I should have made that clearer,
as lots of people assume the two words mean the
same thing.

The first-peek beta version of Apple Iigs BASIC is
avaitable to APDA members for $50 plus $3.19
shipping (Apple Programmer’s and Developer’s Asso-
ciation, 290 SW 43rd St, Renton, WA 98055 206-251-
6548; membership is $20 a year U.S., $25 Canada/
Mexico, $35 elsewhere). As you mention, the finished
product is expected sometime next year. A compiled
version of this language is also under development,
but this will come from TML Systems inJacksonville,
Fla.
At AppleFest, APDA also announced the availability
of the first non-beta version of the Apple Pro-
grammer’s Workshop ($100 plus $4.19). This pro-
vides what the professionals like to call a "command
shell,” which is fancy words for prompi-line-based
fite-manipulation commands such as those available
al the Applesoft prompt (catalog, delete, rename,
exec, PR#, and so on), as well as a bunch more
Basic.system doesn't offer. APW also includes a full-
screen fext editor for writing programs, a 65816
macro assembler, and a "linker,” which can make
one large executable file from separate program files
created by any combination of the assembler or
other APW languages (Apple’s AFW C, currentlyj in
beta version 7 for $75 plus $1.31; and TML Pascal,
$119.95 plus $1.50. are the only APW languages at
the moment).

Beta versions of APW included a debugger and
some desk accessories for peeking at data used by
the memory manager and system loader during
program execution. The debugger, which isstill inits
beta version, is no longer a part of APW, but s
available separately under the name Apple Ilgs
Debugger ($15.95 plus $.94).

At Applefest, APDA also released the Apple Iigs
System Disk v3.1 ($12.50 plus $.69), the Addison
Wesley version of the Technical Introduction fo
the Apple Iigs ($7.50 plus $150), and a first-peek
photocopied version of the mer's Iniro-
duction to the Apple Ilgs ($37.50 plus $3.40).

Previously available were the Addison-Wesley
versions of the Apple Iigs Firmware Reference
($18.50 plus $2.50) and the ProDOS 16 Reference
Manual ($2195 plus $2.75). Also available in a
photocopied beta draft is the Apple Iigs Toolbox
Reference ($60.00 plus $8.00).

